
MILLIMAN WHITE PAPER 

An actuary’s guide to Julia:  
Use cases and performance benchmarking in insurance 1 January 2024 

An actuary’s guide to Julia:  
Use cases and performance 
benchmarking in insurance 
 
 
Yun-Tien Lee, FSA, MAAA, Senior Data Scientist 
Victor Morales, Software Engineer 
Jim Brackett, Principal and Senior Director of Financial Technology 
Joe Long, ASA, MAAA, Consulting Actuary and Data Scientist 
Tom Peplow, Principal and Senior Director of Technology Strategy 
 
 

WHAT IS JULIA? 
Julia is a general-purpose open-source programming language that debuted in 2012, prioritizing ease of use and execution efficiency. It 
blends a variety of innovative programming language design concepts and is licensed under the Massachusetts Institute of Technology 
(MIT) license. The journal Nature fittingly introduces it as, “Come for the Syntax, Stay for the Speed.”  Over the years, there has been 
considerable growth in Julia’s library ecosystem and community. For further information, visit https://julialang.org. 

In this paper, we will explore Julia’s potential in the insurance industry by contrasting its capabilities with other popular languages, 
including Python, Rust, .NET (C#), and C++, focusing on development efficiency and processing performance. We will also introduce 
Mojo, a new programming language released in 2023, designed to combine the usability of Python with the performance of C.  

It is important to note that our discussion does not encompass the statistical programming language R. This omission should not be 
interpreted as a diminishment of R's value or the utility of other programming languages for actuaries. Our focus is predominantly on 
high-performance numerical computing and general-purpose programming languages. While R is indeed a powerful tool used across 
the actuarial and other professions to rapidly prototype new ideas, it is predominantly recognized for its prowess in statistical analysis 
and data visualization, rather than as a high-performance numerical computing and general-purpose programming language.  

Throughout, we will highlight challenges associated with these mentioned languages, offering insights into their optimal applications. 
The primary objective of this paper is to present Julia as a potential language that actuaries and other professionals can leverage to 
help balance the trade-offs between development and run-time costs when creating new products and tools. Additionally, we highlight 
how Julia can alleviate the common frustrations users face associated with managing multiple third-party package dependencies, as 
seen in other languages like Python. A significant portion of Julia's packages are written in native Julia, facilitating seamless integration 
with the language's features. This native development not only enhances performance but also simplifies package management and 
dependency resolution, making it an efficient choice for a variety of projects. 

WHAT ARE JULIA’S CORE CONCEPTS AND DATA ANALYTICS PACKAGES AND TOOLS? 
One of the original design concepts of Julia is to tackle the two-language problem, where many data analytics applications are 
prototyped in a slow yet easy-to-use language in order to quickly test an idea and later on moved to a faster language to boost 
performance. Julia comes with simple syntax and handy tools to allow users to implement ideas or concepts in a quick manner but it 
can still optimize code execution using the most up-to-date compiler mechanism. It supports Unicode, which makes it straightforward to 
translate formula into code if necessary, and the core design idea of multiple dispatch allows effortless extension and collaboration. In 
fact, users are even allowed to inspect lower-level compiler-generated representations by invoking simple macro calls. It also offers 
simple internal-environment management of packages. 

https://julialang.org/


MILLIMAN WHITE PAPER 

An actuary’s guide to Julia:  
Use cases and performance benchmarking in insurance 2 January 2024 

In terms of data analytics tools, Julia offers a wide variety of notebook utilities and data manipulation and visualization packages. It also 
supports reading and putting data in Excel format and even doing data analyses in an Excel environment, as does Python.i Here are 
some common data manipulation procedures in both Julia and Python. Specifically, the first exhibit shows procedures to: 

 Compute number of occurrences of specific values in a certain data table 
 Get unique values from a certain data table 
 Calculate a specific quantile value from a data table 
 Extract a specific range of values from a data table 
 Filter out specific values from a data table 

 

Both Julia and Python offer a diverse array of data manipulation packages, each tailored to specific applications. For the comparisons 
above and below we have chosen to focus on DataFrames in Julia and Pandas in Python, as they share similar applications and are 
both known for their user-friendly interfaces. The DataFrames package in Julia, developed natively, capitalizes on Julia's strengths for 
seamless integration and optimized performance. It is particularly acclaimed for its efficient columnar data storage, which enhances 
cache locality. Additionally, DataFrames can be effectively used in conjunction with native Julia modules like Threads and Distributed, 
enabling robust parallel and multithreaded data processing capabilities. In contrast, Pandas in Python is primarily designed for single-
threaded operations by default. While parallelism can be achieved with Pandas through additional packages such as Dask, 
multiprocessing, or by opting for alternative libraries like Polars – which is inherently designed for multi-threaded data processing – 
these approaches typically require more setup and configuration in contrast to the more inherent parallel capabilities within the  
Julia ecosystem.  

  



MILLIMAN WHITE PAPER 

An actuary’s guide to Julia:  
Use cases and performance benchmarking in insurance 3 January 2024 

The second exhibit shows procedures to group by on a certain key value of a data table, as well as to join two data tables on a specific 
key value in common ways, including inner, outer, left, and anti. 

 
  



MILLIMAN WHITE PAPER 

An actuary’s guide to Julia:  
Use cases and performance benchmarking in insurance 4 January 2024 

 

In terms of common machine learning libraries, Julia also offers a wide range of them. Consider the usage of some common machine 
learning libraries in both Julia and Python. 

 

 

The above comparisons show a high degree of similarity between the two languages and how easy it is to do data processing and 
modeling with them. 



MILLIMAN WHITE PAPER 

 

USE CASES FOR JULIA IN INSURANCE RELATED FIELDS 
The insurance field is a complicated world with so many diverse factors intertwined when it comes to modeling in data science-related 
approaches. However, the whole process can generally be classified into three marketing phases—before, during, and after sale.ii 
Based on our experience and past client projects, we have identified several relevant models below to focus on for comparisons 
between various languages. 

At the time of writing this paper in 2023, Mojo as a new language has gained traction because it combines the usability of Python with 
the performance of C, unlocking the performance of Python by adding features including parallelization and vectorization. We have 
made an initial attempt to implement the use cases in Mojo and will also benchmark its performance on one of the virtual machines. 
However, at the time of writing, it only provides a subset of the syntax included in Python. Therefore, we only implemented two use 
cases in Mojo to illustrate its syntax and capabilities. 

SIMILARITY CALCULATION 
Applications like risk segmentation, customer classification, and fraud detection are typically modeled using unsupervised learning 
approaches on structured data, where the distance between a pair of records is determined from a similarity measure. Data fields can 
generally be categorized into two types, categorical and numerical. In the case of categorical data fields, they are usually transformed 
into one-hot encoded format, where all field values are binary, i.e., either 0 or 1. After the transformation, one record becomes 
essentially a series of bits, or bit arrays. It is much more efficient, in terms of both time and space efficiency, if those bits can be 
arranged together into a series of contiguous bytes, or byte arrays. Julia offers very handy primitive data types like BitVector, which 
allows easy generation or conversion of bit arrays into byte arrays, and users can still do bitwise operations on converted arrays, which 
not only results in greater usability but it also hugely boosts performance. 

We highlight this below, in both Julia and Python, by randomly generating two bit arrays, which can also be converted from categorical 
fields of two records in a real dataset.  

JULIA PYTHON 

  

 

In most applications we are interested in finding out the degree of overlap between two records, or similarity measures, which in the 
case of one-hot encoded arrays can be directly translated into the total number of 1s after bitwise-and operations. Besides, Julia offers 
handy benchmarking tools that allow users to find out execution time of code sections in a very intuitive and straightforward manner, 
shown in the graphic below. From the statistics on a certain virtual machine we can see the median time of doing several runs is around 
3.6 milliseconds (ms). On the other hand, we can do similar operations in NumPy, one of the most powerful computational packages, or 
a special-purposed BitVector library in Python. It is obvious that the performance of similar operations in Python is clearly not 
impressive. Windows 11 Enterprise is installed on a virtual machine with 12th Gen Intel Core i7-1270P 2.2 megahertz (MHz) with 12 
physical and 16 virtual cores and 32 gigabytes (GB) of memory, and the same virtual machine applies through all benchmarking results 
in this paper (excluding the appendix). 



MILLIMAN WHITE PAPER 

 

 

We can do even better by using functions in built-in libraries in Julia, for example LinearAlgebra. From the statistics we can see that the 
median time of doing several runs of the same operation, by taking advantage of parallel instruction processing in the processors, is 
around 0.9 ms. On the other hand, a specially purposed library, bit array, must be used to seek higher performance in Python. Note two 
major differences here: 

 The built-in library has not taken parallelism into account. Users must find ways to do it in parallel, which can be a  
burdensome process. 

 The random number generator interface is different in each library, cf, a unified name and structure in Julia, which would lead to 
better code readability and maintenance. 

If we compare the performance between Julia LinearAlgebra and Python bit array, the boost multiplier in performance becomes 
approximately nine times. The boost multiplier is defined as the run-time ratio between two languages, which in the current case is 
approximately 9 / 1 ≈ 9. 

 

  



MILLIMAN WHITE PAPER 

 

On the other hand, vectorization functionalities available in Mojo can be used to speed up the calculation while maintaining the simple 
syntax like Python. After compilation and execution on the same machine, the boost multiplier over Python is approximately 9 / 2 ≈ 4.5. 

 

MOJO 

 

 

 

We can go a step further in customizing calculations by taking advantage of the parallel processing available on almost all modern 
central processing unit (CPU) architectures, which we have used to implement the calculation procedure in C#, C++, and Rust. 
Although it has been actively advised not to use C++ anymore because of security risks,iii we chose to include it here because it is still 
considered the fastest language. It is useful to compare the complexity incurred of using C++ directly over the other languages. Many of 
the challenges in the C++ solution come from complexity of the developer ecosystem, which are purposefully solved for in the other 
languages. It is important to highlight that much of the optimized Python libraries wrap C++ native code, whereas Python could be 
viewed as a domain-specific language (DSL) for invoking C++. Although our C++ implementations do not excel, typically teams are 
more productive using other languages without needing the reach for C++ as a tool. Please refer to the appendix for all benchmarking 
results. 

On the other hand, in terms of ease of use and development time, it often takes a significant amount of time, compared to Julia or 
Python, to get working codebases in these general-purpose languages, even for experienced programmers. Take the C# codebase, for 
example. We would typically need to build up a program structure available in the Parallel library to do parallel processing. A similar 
structure has to be set up in Rust. Moreover, because pure C++ does not provide utilities to count the number of 1s in a memory unit 
(PopCount in C# codebase), we would need to either implement customized functions or import proper libraries to achieve that, which 
would translate to higher development costs in general. 

  



MILLIMAN WHITE PAPER 

 

C# 

 

 

 

We can do similar benchmarking for numerical data fields. Here we randomly generate two numerical arrays, which can also be 
converted from numerical fields of two records in a real dataset. Because both use the optimized Basic Linear Algebra Subprograms 
(BLAS) library,iv the performance boost is not material in this case. 

 

 



MILLIMAN WHITE PAPER 

 

There are several ways to speed up the Python codebase. For example, using additional settings in Cython it is straightforward to 
convert Python to C implementations and speed up the codebase. However, because it involves an additional layer of translation 
between codebases, the performance boost is not as high as if the codebase were implemented in a more efficient language, as 
expected. Please refer to the appendix for benchmarking results from different languages on certain virtual machines and standardized 
machines using workflow functions in GitHub Actions. 

Using graphic processing units (GPUs) is another common way to speed up a variety of codebases by running simple calculations in 
parallel across hundreds to thousands of GPU units. The Julia CUDAv package allows users to write generic Julia code that works 
across multiple GPU platforms and offers a very similar syntax compared to codebases run on CPU. However, because results from 
GPU operations are not end results and users may have to transfer data from GPU memory to CPU memory back and forth, GPU 
operations may slow down the whole process in the end due to additional data transfer overhead. Related topics may be discussed in 
papers to follow. 

PARAMETER ESTIMATION 
Applications like cross-selling and recommendation systems typically involve matrix decomposition or similar approaches to estimate 
optimal parameters. There are several parameter estimation algorithms, but one of the most popular is stochastic gradient descent, 
where the direction and size of descent are generally determined from a loss function and historical values of the parameters. One of 
the related algorithms, Factorization Machines, decomposes user-feature matrices into different degrees of interaction variables.vi 
There have been several implementations on dense matrices but, due to the infrequent nature of insurance transactions, they would 
typically result in sparse matrices, where the decomposition algorithm must be adapted. 

Consider one possible implementation to estimate all interaction terms when the degree is 2. Let X denote the user-feature matrix to 
decompose, V and ΔV the interaction variables to estimate in matrix form, total losses the difference between predicted and actual 
values, κ the degree of freedom of the interaction variables, α the learning rate, and γ and λᵥ the momentums. The following is a 
simplified procedure to update V and ΔV with respect to the total losses and the sparse matrix X. Because Julia offers rich manipulation 
options for sparse matrices, the whole process can be made straightforward to implement and run fast at the same time. The boost 
multiplier between Julia and Python is around six times on the same virtual machine. Benchmarking results among different languages 
can also be found in the appendix. This use case is currently not implemented in Mojo because a proper library support on sparse 
matrices has not been identified but, as it continues to grow, we plan to have it implemented in future researches. 

 

On the other hand, we take C++ codebases as an example. The core calculation procedures look a lot more similar to what Julia or 
Python provides, but in fact separate procedures were created to do sparse matrix manipulation. C++ represents a language choice 
somewhat different from the others, with a lot more flexibility and complexity in the developer experience. For example:  

 It is not paired with a package system like PIP or NuGet. 
 It is sensitive to architecture and toolset, e.g., Linux versus Windows, Intel versus Advanced Micro Devices (AMD), GNU Compiler 

Collection (GCC) versus Microsoft Visual C++ (MSVC), etc. 



MILLIMAN WHITE PAPER 

 

 Integrating libraries can require complex build steps that vary by application program interface (API) or application binary interface 
(ABI), compiler, and operating system. Consequently, there can be countless ways to solve any given problem, both in terms of 
possible library dependencies and in how selective one is in choice of architecture. 

For the purposes of this paper, the authors chose to use one and only one external library for the examples covered here: Boost. Boost 
is readily accessible in the public domain, compatible with multiple C++ compilers, comparatively straightforward to build, and portable 
across multiple architectures. The benefits of Boost include developer conveniences that approximate those inherent in the other 
languages (and related package management solutions), as well as applicability to a broad array of operating systems and chipsets, 
like how those sensitivities are hidden by interpreted and just-in-time (JIT) compiled code. The resulting C++ examples are also of 
similar source code size and complexity to the other languages. 

However, a consequence of this decision is that maximum run-time performance is potentially compromised. Theoretically, because all 
the other languages and libraries were built on top of C or C++, it should always be possible to equal or exceed their performance 
starting with C++. This would, however, require relaxing the other factors considered above, including build complexity, portability, and 
source code footprint. Accordingly, the C++ examples here are more accurately described as "C++ with Boost only." The authors 
believe this context is important when evaluating relative performance of the various solutions covered here. 

 

C++ (WITH BOOST ONLY) 

 

 

 



MILLIMAN WHITE PAPER 

 

 

SIMULATION 
Applications like customer behavior analyses, agency force analyses, 1-in-100 risk analysis, and pricing and reserving of certain 
complex insurance products, including interest-sensitive life and variable annuities, typically require modeling through simulation to get 
the average or values at certain percentiles. The number of scenarios typically ranges from 1,000 to 2,000, and the main loop of the 
simulation will usually need to reference an existing series of values, for example mortality tables or yields from pre-generated interest 
rate scenarios, or customer or agency information. 

Let “MORT” denote mortality tables and “yield” denote interest rate scenarios. We would like to find reserves in terms of maximum 
deficiency of a certain variable annuity contract. Also assume there are 10,000 policies and 1,000 scenarios. It is shown in the following 
comparison that Julia is again the better by a boost multiplier of around 1.5 times. Benchmarking results among different other 
languages can also be found in the appendix. 

 

In the meantime, Julia can be made even faster fairly easily by flattening vector notations into plain loops also parallelizing on the 
scenario loop due to their independent nature (the number of workers is 16 in the example below). 

JULIA 

 



MILLIMAN WHITE PAPER 

 

The run-time of Mojo after parallelizing the loop for scenarios and vectorizing the loop for different policies is around 4.3 seconds on the 
same machine. In this example, Mojo is a lot faster compared to our plain Python implementation that had a run-time of about 39.7 
seconds, but the syntax may suggest a deeper learning curve. Based on our initial exploration of Mojo in this paper, we recommend 
keeping an eye on it as it continues to grow. 

 

MOJO 

 

 

 

 

  



MILLIMAN WHITE PAPER 

 

On the other hand, we can implement it in C++ with similar core structures. However, separate class utilities also must be built up to 
invoke parallel processing routines, which again increases development costs. 

 

C++ (WITH BOOST ONLY) 

 

 

 

 

  



MILLIMAN WHITE PAPER 

 

The authors even asked ChatGPTvii to convert Python code in this use case to C++ with a carefully crafted prompt that included specific 
requests such as parallelizing all possible loops to take advantage of the high-performance computing capabilities of C++. For this use 
case, ChatGPT correctly identifies the requests and utilizes the Open Multi-Processing (omp) package to parallelize loops, but in terms 
of efficiency it does not outperform the above code, which was crafted by a professional C++ programmer. This ChatGPT migration 
example is a great illustration of the trade-offs between development and run-time costs when creating new products and tools, and 
how code can likely always be improved to increase run-time efficiency. As technology evolves, we will still have to resort to experts for 
properly maximizing performance wherever possible. 

C++ (CONVERTED FROM PYTHON BY CHATGPT) 

 

 

 

COMMENTARY ON JULIA’S PAIN POINTS  
Day-to-day big data analysis for the insurance industry typically involves researching and quickly prototyping various ideas by actuaries 
and other professionals. Julia’s ecosystem comes with rich libraries in many aspects, and the easy-to-use syntax system allows users 
to implement algorithms in a straightforward manner. Its support to Unicode symbols also allows easier transliteration of formulas to 
code, which also creates easy-to-consume documentation. Moreover, the ease of use does not sacrifice performance. If there are two 
equally expressive languages but one is faster than the other, it is recommended to use the faster one. The speed improvement would 
not only benefit in production but also everywhere in the development, test, and release cycles. 

Having said the above, Julia as a general-purpose language is not a panacea under all circumstances. When it comes to implementing 
performance-critical tasks on specific platforms, it would be better to do them in lower-level languages such as C or assembly. As we’ve 
shown here, the language’s ecosystem is an important factor. Oftentimes out-of-the-box packages are available to solve narrow 
computational problems, which can be combined to solve domain-specific problems. In some cases, actuarial science finds itself in a 
corner where those narrow computational problems are not widely solved, or solutions using a combination of packages are complex to 
achieve. There is merit in collaboration around general-purpose high-performance actuarial libraries to ease the development burden 
for all, but they should be used to solve the finer-grained problems rather than the coarse-grained, and forever changing, regulatory 
problems. On the other hand, for extensions to existing libraries on certain systems, it would be better to stick to the original language if 
the main purpose is to maintain the system, and the choice of language may be better based on the wealth of the ecosystem, rather 
than specific language features favorable to niche problems.  

In the rapidly evolving landscape of programming technologies, only time will tell which language will become the most robust 
ecosystem for actuaries and data scientists alike. As demonstrated in this paper, there are already several promising and user-friendly 
languages available to tackle a variety of tasks. With the increasing computational complexity of the problems we face, the economic 
and environmental impacts of resource-intensive code are becoming more significant. Therefore, it is crucial to be cognizant not only of 



MILLIMAN WHITE PAPER 

 

the speed and ease of development but also of the costs associated with the code we create. Our efficiency and effectiveness as 
problem solvers are directly influenced by these factors. 

Furthermore, before embarking down the path of developing new code bases to solve a task, it is crucial to assess whether existing 
software platforms, which can be licensed, already address the problem at hand. For common challenges, existing software platforms 
available for licensing might offer a more cost-effective and time-efficient solution than developing and maintaining an entirely new code 
base. The potential savings from license fees, when compared to the resources required for developing new software, can be 
substantial. Thus, a thorough assessment of available options is essential for making informed decisions in our increasingly complex 
and technology-driven landscape. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
  

CONTACT 
Yun-Tien Lee 
yuntien.lee@milliman.com 

Victor Morales 
victor.morales@milliman.com 

Jim Brackett 
jim.brackett@milliman.com 

Joe Long 
joe.long@milliman.com 

Tom Peplow 
thomas.peplow@milliman.com 

 

© 2024 Milliman, Inc.  All Rights Reserved. The materials in this document represent the opinion of the authors and are not representative of the views of Milliman, Inc. Milliman does not certify the 
information, nor does it guarantee the accuracy and completeness of such information. Use of such information is voluntary and should not be relied upon unless an independent review of its accuracy 
and completeness has been performed. Materials may not be reproduced without the express consent of Milliman. 

Milliman is among the world’s largest providers of actuarial, risk 
management, and technology solutions. Our consulting and advanced 
analytics capabilities encompass healthcare, property & casualty 
insurance, life insurance and financial services, and employee benefits. 
Founded in 1947, Milliman is an independent firm with offices in major 
cities around the globe. 

milliman.com 

mailto:yuntien.lee@milliman.com
mailto:victor.morales@milliman.com
mailto:jim.brackett@milliman.com
mailto:joe.long@milliman.com
mailto:thomas.peplow@milliman.com
http://www.milliman.com/


MILLIMAN WHITE PAPER 

 

Linux C# C++ Julia Python Rust
Min 1.49 14.39 1.51   8.10        2.66   
Mean 1.62 21.31 1.81   9.29        3.09   
Max 1.93 32.68 2.96   17.67      12.39 

Windows C# C++ Julia Python Rust
Min 0.22 8.92   0.42    4.81    1.55    
Mean 0.25 9.17   0.49    5.13    1.84    
Max 0.28 9.42   0.88    5.80    3.53    

Windows C# C++ Julia Python Rust
Min 0.22 8.92   0.42    4.81    1.55    
Mean 0.25 9.17   0.49    5.13    1.84    
Max 0.28 9.42   0.88    5.80    3.53    

APPENDIX 
GitHub Actionsviii is a continuous integration and continuous delivery (CI/CD) platform that allows users to automate build, test, and 
deployment pipeline. Users can create workflows that build and test every pull request to the repository, or deploy merged pull requests 
to production. In addition, it is expedient for the user to test the running time of different code bases on standardized machine settings. 
We have extended the performance benchmarking of Julia and Python on the three insurance-related use cases discussed in the 
article to Cython, Rust, C#, and C++ix using the latest ubuntu build from GitHub Action. However, with GitHub Action it is not 
guaranteed that you will get the same class of hardware every time and, if you do, it is still possible that the hardware is being shared to 
run another action. Therefore, that is important to keep in mind as it may cause variations in the effective performance available. 
Because of this, we have also included benchmarking results on two other virtual machines: (1) Windows 10 Enterprise, with 16 
physical cores and 24 virtual on 12th Gen Intel® CoreTM i9-12900@2.4 gigahertz (GHz) and 64GB memory, and (2) Linux Ubuntu 
22.04.2 LTS, with 1 physical core and 2 virtual on Intel® Xeon® Platinum 8168@2.7GHz and 4GB memory. All benchmark results are 
summarized with 20 runs (except Rust in parameter estimation where only one run was issued). 

Note, while reviewing these results, that with every language it is likely possible to improve the run-times of these examples if more time 
is allowed. To create these examples, we focused on having competent developers spend similar time coding each example to highlight 
the trade-off between development efficiency and processing performance. It’s likely that the best developer in the world could spend 
enough time to make C++ or other equivalent ones run the fastest of all of these. 

 Similarity calculation. From the graph on GitHub Actions it shows a boost multiplier of about 8, that is, Julia implementation is 
almost eight times faster than either Python or Cython. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source: GitHub Actions 

  



MILLIMAN WHITE PAPER 

 

 Parameter estimation. From the graph on GitHub Actions it shows a boost multiplier of about 4, that is, Julia implementation is 
about four times faster than either Python or Cython. 

 

                         
Source: GitHub Actions 

 

 Simulation. From the graph on GitHub Actions it shows a boost multiplier of 4, that is, Julia implementation is about four times 
faster than either (un-parallelized version of) Python or Cython. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Linux C# C++ Julia Python Rust
Min 7,083 4,014 946     1,944  1,066  
Mean 7,131 4,087 983     2,011  1,066  
Max 7,152 4,140 1,003  2,095  1,066  

Windows C# C++ Julia Python Rust
Min 3,034 2,526 215     971     334     
Mean 3,038 2,538 232     977     334     
Max 3,042 2,558 242     997     334     

GitHub C# C++ Cython Julia Python
Min 5,895 4,308 2,626  627     2,809  
Mean 5,910 4,317 2,774  658     2,894  
Max 5,923 4,331 2,851  759     3,063  

Linux C# C++ Julia Python Rust
Min 33,861 14,163 26,284 75,331 82,766 
Mean 33,888 14,234 26,431 78,274 83,100 
Max 33,917 14,282 26,568 80,962 83,679 

Windows C# C++ Julia Python Rust
Min 4,405   1,754   1,838   30,661 14,153 
Mean 4,491   1,775   1,910   45,637 14,301 
Max 4,565   1,800   2,132   88,259 14,425 

GitHub C# C++ Cython Julia Python Rust
Min 59,720 19,270 71,710 18,370 73,630 75,920 
Mean 59,940 19,300 71,760 18,860 73,660 76,520 
Max 60,100 19,420 71,850 19,310 73,710 76,950 



MILLIMAN WHITE PAPER 

ENDNOTES 
i Refer to https://docs.juliahub.com/JuliaInXL/AZenl/1.2.0/ and https://www.pyxll.com/docs/introduction.html. 
ii Refer to the published paper at https://www.milliman.com/en/insight/potential-data-sources-for-life-insurance-ai-modelling. 
iii Refer to some discussions at https://www.zdnet.com/article/programming-languages-its-time-to-stop-using-c-and-c-for-new-projects-
says-microsoft-azure-cto/. 
iv Refer to the documentation at https://numpy.org/devdocs/reference/generated/numpy.dot.html. 
v Refer to the introduction at https://github.com/JuliaGPU/CUDA.jl. 
vi Refer to the notebook at https://www.kaggle.com/code/chenhaokun/factorization-machines/notebook. 
vii Refer to the website at https://chat.openai.com/. 
viii Refer to the documentation at https://docs.github.com/en/actions/learn-github-actions/understanding-github-actions. 
ix Refer to all code bases at Julia_research_2023 (github.com).  

https://docs.juliahub.com/JuliaInXL/AZenl/1.2.0/
https://www.pyxll.com/docs/introduction.html
https://www.milliman.com/en/insight/potential-data-sources-for-life-insurance-ai-modelling
https://www.zdnet.com/article/programming-languages-its-time-to-stop-using-c-and-c-for-new-projects-says-microsoft-azure-cto/
https://www.zdnet.com/article/programming-languages-its-time-to-stop-using-c-and-c-for-new-projects-says-microsoft-azure-cto/
https://numpy.org/devdocs/reference/generated/numpy.dot.html
https://github.com/JuliaGPU/CUDA.jl
https://www.kaggle.com/code/chenhaokun/factorization-machines/notebook
https://chat.openai.com/
https://docs.github.com/en/actions/learn-github-actions/understanding-github-actions
https://github.com/milliman/julia_research_2023

